# Teacher Quality Policy When Supply Matters

Jesse Rothstein
UC Berkeley & NBER

# We want to raise teacher productivity. How?

### **Objectives**

#### **Policies**

|                                         | Existing teachers work harder | Existing teachers work better  | Higher-ability<br>teacher<br>workforce |
|-----------------------------------------|-------------------------------|--------------------------------|----------------------------------------|
| Performance pay                         | Repeated failure<br>(in US)   |                                | ??                                     |
| Performance-<br>based non-<br>retention | No evidence<br>either way     |                                | ??                                     |
| Coaching and mentoring                  |                               | ++<br>(Taylor & Tyler<br>2011) |                                        |

## Jumping off points

#### Safelite performance pay (Lazear 2000)

- Big effects of pay-for-performance on effort & selection.
- Lazear (2003) suggests same for education.

#### A long literature on performance measurement (AKA value added modeling).

- Ongoing debates about statistical properties in low-stakes settings.
- Little formal consideration of how the measures will be used.
- <u>Tennessee POINT (Springer et al. 2010)</u>. Performance bonuses up to \$15,000 per year had no effect.
  - Three-year experiment with volunteers.
  - Gets at effort margin; selection impossible to study using RCTs
- <u>Staiger & Rockoff (JEP 2010)</u>. Model selection effects of performance-based firing rules.
  - No model of the labor market -- only tradeoff is ability vs. experience.
  - Optimal policy: Fire 80% of teachers after year 2.

## This paper

- Goal: Understand potential selection effects of performance pay and performance-based retention, taking account of:
  - (Some of the) known imperfections of performance measures
  - Labor market effects (aka self selection contraints)
- Strategy: Develop dynamic model of occupation choice (teaching vs. other) & calibrate with plausible parameters.
  - Focus on role of limited information
  - Set aside influence activities / goal distortion / manipulation treat performance measure as noisy but unbiased.
- Policy counterfactuals: New teacher contracts
  - Implemented by entire education sector
  - Established and permanent

## The logic of the model

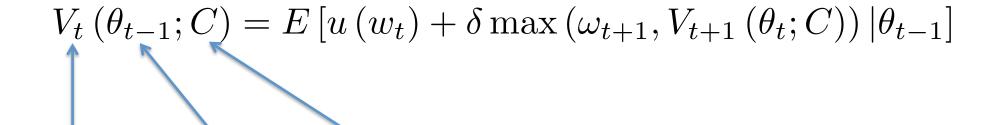
- Let  $\tau$  be a teacher's true ability, and  $\mu_t$  her perceived ability (posterior mean) after t years.
- Alternative contracts change the expected compensation as a function of  $\tau$ . The more reliable the performance measure, the steeper the slope of E[w |  $\tau$ ].
- Incentives for selection depend on E[E[w |  $\tau$ ] |  $\mu_t$ ]. This flattens the slope if teachers do not have information about their own ability.
- But we care about selection on  $\tau$ , not on  $\mu$ . This creates more flattening if teachers' information is limited.
- In the model, teachers start with a small amount of private information and learn more from subsequent performance measures.

#### **Contracts**

1. Baseline: No firing, salaries rise with experience.

#### 2. Bonuses

- 20% bonuses if 0.5( $y_1 + y_2$ ) >  $y^{PP}$
- 1<sup>st</sup> year teachers ineligible.
- y<sup>PP</sup> calibrated so 25% of current teachers qualify.
- Not a tournament more could qualify if ability distribution rose.
- Base salaries reduced to yield same total number of teachers.

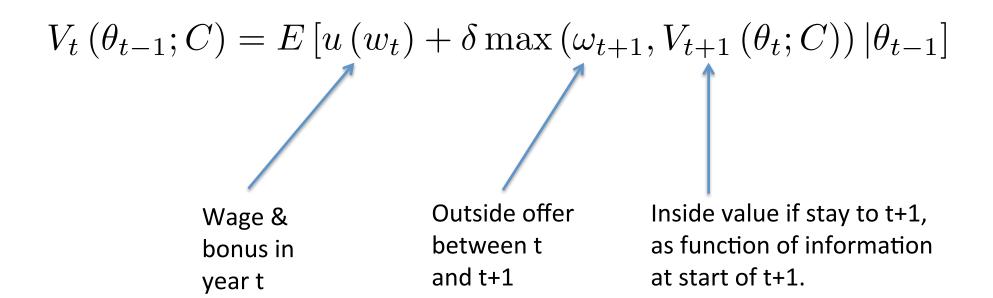

#### 3. Firing

- Teacher fired if district's posterior mean falls below a threshold y<sup>F</sup>.
- Posterior mean:

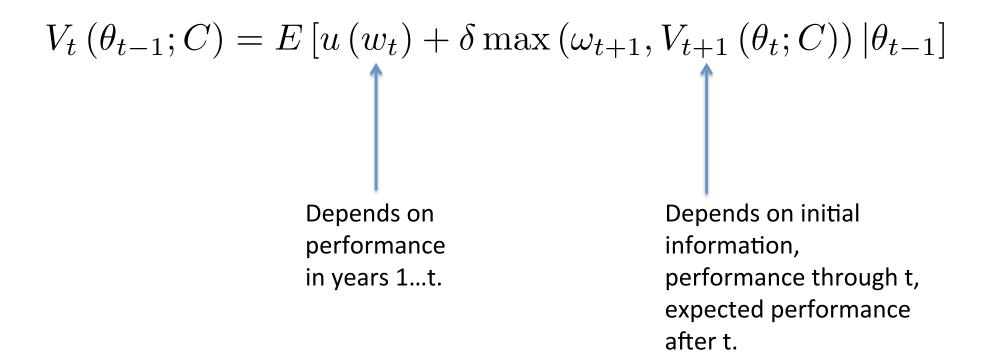
$$\overline{y} \frac{\sigma_{\tau}^{2}}{\sigma_{\tau}^{2} + \frac{\sigma_{\varepsilon}^{2}}{t}}$$

- y<sup>F</sup> calibrated so 10% of current teachers would be fired immediately.
- Firing reduces future earnings distribution by 10%.
- Salaries increased to yield same total number of teachers.

## Dynamic optimization problem

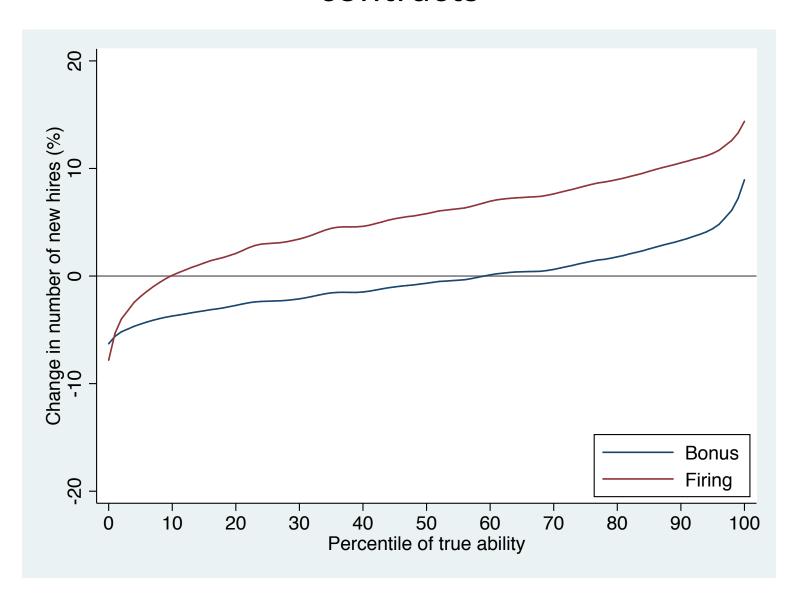



Value if remain in teaching in year t

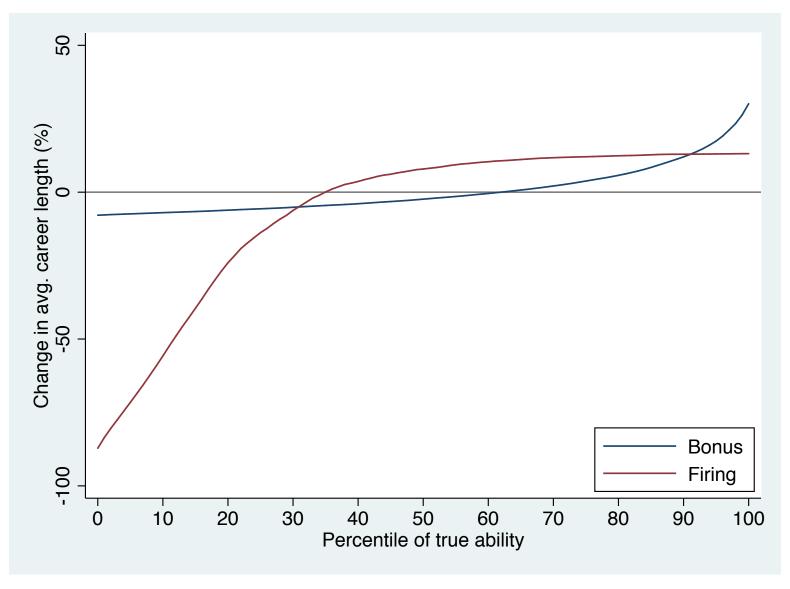

State Contract variables:
Initial information, performance in years 1

through t-1

## Dynamic optimization problem




## Dynamic optimization problem



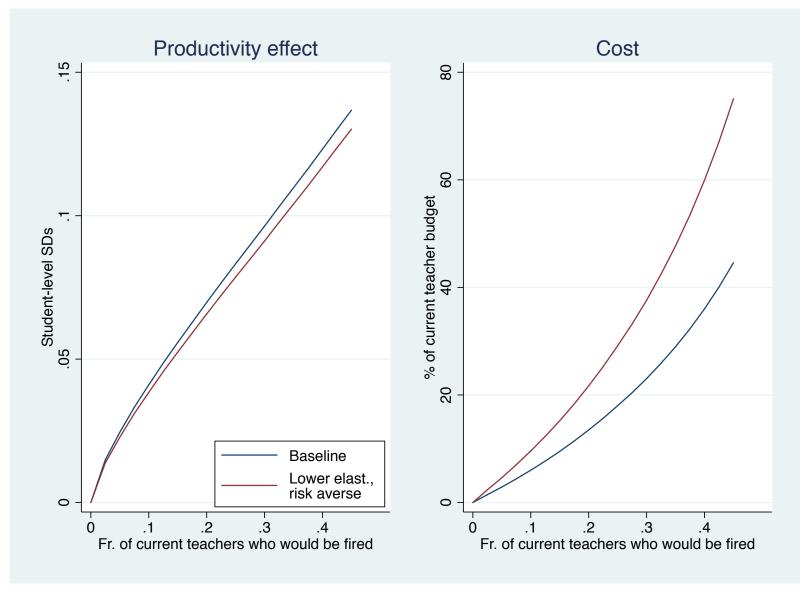

Expectation is over posterior distribution of own ability, distribution of performance in t, t+1, ..., T given ability.


## Entrants by ability under bonus & firing contracts



## Career length by ability




## Total # of teachers by ability



## Impact of alternative contracts

|                                    | Base              | Bonuses          | Firing           |
|------------------------------------|-------------------|------------------|------------------|
| Ability: Mean (SD)                 | 0.000<br>[0.150]  | 0.015<br>[0.153] | 0.040<br>[0.130] |
| Fr. 1 <sup>st</sup> year           | 8.0%              | 8.0%             | 8.1%             |
| Fr. 1 <sup>st</sup> three years    | 30.9%             | 30.8%            | 31.0%            |
| Avg. experience                    | 8.8               | 8.9              | 9.1              |
| Impacts: Mean (SD)                 | -0.011<br>[0.151] | 0.004<br>[0.155] | 0.029<br>[0.134] |
| Base salary (rel. to baseline)     |                   | -3.6%            | +5.4%            |
| Total wage bill (rel. to baseline) |                   | +1.8%            | +5.9%            |
| Net impact on effectiveness        |                   | +0.015           | +0.041           |

## Varying the firing rate



## Multiple tasks & influence activities

#### Multiple tasks

- Suppose two dimensions of output, A & B, with  $corr(\tau_A, \tau_B) = 0.4$ .
- Reward A but want B.

#### Influence activities

- Can raise measured performance by E, at personal cost  $c(E) = kE^2$ .
- Calibrate k: c(0.137) = 0.2. [SD( $\tau_A \mid \tau_B$ )=0.137].
- Option A: E doesn't affect dimension-B output.
- Option B: E comes at expense of dimension B.

# Impact of firing policy with multiple tasks & influence activities

|                                    | Measured<br>effect | True effect on measured output | True effect on unmeasured output | Cost  |
|------------------------------------|--------------------|--------------------------------|----------------------------------|-------|
| Baseline                           | +0.042             | +0.042                         | n/a                              | +6.1% |
| Multiple outputs                   | +0.042             | +0.042                         | +0.020                           | +6.1% |
| Influence activity – nondistorting | +0.037             | +0.030                         | +0.013                           | +3.9% |
| Influence activity – distorting    | +0.037             | +0.030                         | +0.005                           | +3.9% |

#### Conclusions

- Can't predict effect of changing the teaching contract without accounting for the teacher labor market.
- When labor market responses are incorporated:
  - Both bonuses & firing policies have positive effects.
  - Both are expensive (but still pass cost benefit test).
  - Plausible effects are not enormous.
  - Effects evaporate if allow for multiple outputs & influence activities.
- Caveat 1: Model is cooked to make the policies look good.
  - Highly elastic labor supply
  - Lots of private information
  - Little risk aversion
  - Unbiased performance measure
- Caveat 2: Many key parameters are made up.
  - Traditional program evaluations / social experiments will be uninformative.
  - Keys: Labor supply, private information, potential to screen on entry, outside labor market return to teaching experience, impact of firing, potential for goal distortion.