The Long-Term Impacts of Teachers: Teacher Value-Added and Students' Outcomes in Adulthood

Raj Chetty, Harvard John N. Friedman, Harvard Jonah Rockoff, Columbia

October 2012

Introduction: Teacher Value-Added

- What is the best way to measure and improve teacher quality?
- One approach: "value-added" (VA) measures [Hanushek 1971, Murnane 1975,...]
 - Rate teachers based on their students' test score gains
- School districts have started to use such VA measures, leading to considerable debate in policy circles
- Debate about VA stems largely from three key issues [Kane and Staiger 2008, Rothstein 2010, Darling-Hammond et al. 2012]

Question 1: Are VA Measures Accurate?

- Teachers are assigned different types of students
 - → Teachers' estimated VA may depend more on the types of students they get rather than the teachers' actual impacts
- Standard approach attempts to account for this problem by adjusting for student characteristics
 - But is this sufficient to obtain accurate estimates of teacher impacts?
- Resolving this issue is critical for policy [Rothstein 2010]
 - Does VA unfairly penalize teachers for their mix of students?

Question 2: Does VA Predict Long-Term Impacts?

- Even if teacher VA is an accurate measure of teachers' impacts on test scores, it may not be a good proxy for teacher quality
 - Do high VA teachers improve students' long-term success?

... or are they simply better at teaching to the test?

Question 3: Is VA too Unstable for Evaluation?

- Teacher VA estimates fluctuate across years because they are based on samples with relatively few students
 - Many other influences on student progress \rightarrow noise in VA estimates
 - Are VA estimates based on a few years of data sufficiently stable to be useful for teacher evaluation?

Data

- We answer these two questions by tracking one million children from childhood to early adulthood
- Implement analysis by linking two large databases
 - Data from a large school district: teachers, class assignments, and test scores from 1991-2009 for students in grades 3-8
 - Administrative tax records on student outcomes in adulthood (earnings, college, teenage birth) and parent characteristics

Measuring Value-Added

- We measure each teacher's value-added following standard methods used by school districts and researchers [e.g., Kane and Staiger 2008]
- Calculate each teacher's VA in three steps:
 - 1. Calculate each student's test score *gain* from the year before
 - 2. Adjust each student's score gain for differences in characteristics (prior test scores, gender, ESL,...) using a regression model
 - 3. Compute Teacher VA from average adjusted performance for each student, with a Bayesian shrinkage adjustment for noise

Test Score vs. Teacher Value-Added

Teacher Value-Added (Measured in Years Excluding t)

Question 1: Are VA Measures Accurate?

- Approach #1: Do higher VA teachers have different types of students?
 - VA models adjusts for some differences using data available in school district records
 - But do students differ based on other characteristics?
 - Test for sorting using data on parent characteristics from tax data
 - Ex: parents' income, marital status, retirement savings, etc.
 - Calculate *predicted* scores based on parent characteristics using OLS regression

Question 1: Are VA Measures Accurate?

- Approach #2: Quasi-Experimental design based on teacher turnover
 - Ideal experiment: randomly assign students high VA teachers and test if scores go up
 - We use a quasi-experimental approximation to this experiment
 - When high VA teachers arrive at new schools, do scores go up?

Teacher Switchers in School-Grade-Subject-Year Level Data

School	Grade	Subject	Year	Teachers	Mean Score	Mean Age 28 Earnings
1	5	Math	1992	Smith, Vidoni,	09	\$15K
1	5	Math	1993	Smith, Vidoni,	04	\$17K
1	5	Math	1994	Smith, Vidoni,	05	\$16K
1	5	Math	1995	Ladd, Vidoni,	0.01	\$18K
1	5	Math	1996	Ladd, Vidoni,	0.04	\$17K
1	5	Math	1997	Ladd, Vidoni,	0.02	\$18K

• Smith switches to a different school in 1995; Ladd switches into grade 5

Impact of High Value-Added Teacher Entry on Cohort Test Scores

Impact of High Value-Added Teacher Entry on Cohort Test Scores

Impact of Low Value-Added Teacher Entry on Cohort Test Scores

Question 2: Impacts on Outcomes in Adulthood

- Now test whether teachers who raise test scores also improve students' long-run outcomes
- Interpretation: Impact of having better teacher, as measured by VA, for a single year during grades 4-8 on earnings

College Attendance at Age 20 vs. Teacher Value-Added

Teacher Value-Added

Projected Earnings at Age 30 by College Enrollment at Age 20

US News Ranking	College	Mean Earnings at age 30
1 2 3 4 5	Harvard Princeton Yale Cal Tech MIT	\$80,812
6 7 8 9 10	Stanford U Penn Columbia U Chicago Duke	\$74,430
121 122 123 124 125	Arizona St. Catholic U MI Tech U Buffalo U San Fran	\$47,561

Not in college at age 20 \$16,361

College Quality (Projected Earnings) at Age 20 vs. Teacher Value-Added

Earnings at Age 28 vs. Teacher Value-Added

Women with Teenage Births vs. Teacher Value-Added

Teacher Value-Added

Question 3: Stability of VA and Policy Relevance

- Any evaluation of teachers based on VA must rely on only a few years of classroom data
 - This generates noise in VA estimates, potentially reducing its utility for performance evaluation
- Evaluating magnitude of noise requires a policy-relevant metric
 - Frequently-cited correlation coefficients and measures of stability across years not directly informative
- As an illustration, we analyze impacts of selecting teachers based on their VA [Hanushek 2009, Rothstein 2012]

Selecting Teachers on the Basis of Value-Added

The Value of Good Teachers

- On average, replacing a bottom 5% teacher with an average teacher for one year raises a child's cumulative lifetime income by \$50,000
 - For a class of average size (28 students), cumulative lifetime income gains from a high VA teacher surpass \$1.4 million
- Equivalent to \$267,000 in present value at age 12, discounting future earnings gains at a 5% interest rate
- Note that selection is not the only policy tool to achieve these gains: raising a given teacher's VA would in principle have the same impact

Selecting Teachers on the Basis of Value-Added

Present Value Earnings Gain from Deselecting Teachers Below 5th Percentile

Using Value-Added for Teacher Evaluation

- Test scores can provide *one* useful input into teacher evaluation
- But further work is needed to assess VA as a policy tool
- Most important concern: behavioral responses to high-stakes testing [Barlevy and Neal 2011]
 - Using VA measures in high-stakes evaluation could induce negative behavioral responses such as teaching to the test or cheating
 - Can only address this issue empirically by studying districts where VA is starting to be used (e.g., Washington DC)
 - → Main lesson of present study: large potential returns from improving teacher quality, whether using VA or other tools

Slides to Answer Questions

Impacts of Teacher Value-Added on Lagged, Current, and Future Test Scores

Teacher Switchers Design: Changes in Scores vs. Changes in Mean Teacher VA

	Sensitivity of Teacher Value-Added Measures to Controls								
	(1)	(2)	(3)	(4)	(5)	(6)			
	baseline	add parent chars.	add t-2 scores	t-1 scores only	no controls	Quasi- Experimental Estimate of Bias			
Baseline	1.000					3.1% (7.6)			
add Parent	0.999	1.000				2.6% (7.6)			
add t-2 Score	es 0.975	0.974	1.000			1.7% (7.4)			
t-1 Scores on	ly 0.945	0.943	0.921	1.000		14.3% (6.9)			
No Controls	0.296	0.292	0.279	0.323	1.000	87.8% (1.4)			

Impact of High Value-Added Teacher Exit on Cohort Test Scores

