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Abstract

In this study, we attempt to estimate the causal effect of class size on pupils’ perfor-
mance using the data from Italian public primary schools. Since in 2008/09, primary
schools in Italy were subject to the maximum class size of 25 pupils, we observe a
discontinuous relation between class size and enrolment that we exploit to estimate
the class-size effect on pupils’ performance in the context of regression discontinuity
design (RD). Using a standard fuzzy RD model, we focus on the pupils whose schools
are in the small intervals around cutoff values of enrolment. Though we do not find
a clear evidence supporting class-size reduction policy, we observe that class size is
largely used in Italian public primary schools as a kind of compensatory policy.
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1 Introduction

The relationship between class-size and education attainment in economic educational research

has been widely explored. A number of estimation techniques has been used in order to study the

causal effect of class-size on student outcomes, but the existing empirical evidence on the class-

size effect is still contrasting and somewhat inconclusive. However, there is a general agreement

that practioners should firstly follow an identification strategy able to address potential endogenous

selection of students between classes and schools.

In response to the critics of cross-section estimation strategy, in the last decade quasi-experimental

approaches dominated the economic research on the class-size effect.1 Starting with Angrist and

Lavy (1999), numerous studies, mostly based on the regression discontinuity (here after, RD) de-

sign, originally proposed by Thistlewaite and Campbell (1960), have been conducted using the

data from schooling systems in different countries (among others, Hoxby, 2000; Dobbelsteen et

al., 2002; Woessman, 2005; Urquiola, 2006; Leuven et al., 2008). Recently, Urquiola and Ver-

hoogen (2009) have analyzed some critical points about the use of RD design when studying the

class-size effect. Exploiting the data from Chilean schools, they find that schools, subject to the

exogenous maximum-class-size rule and staying in the regression discontinuity intervals, might

exercise selection policy on enrolment that generates discontinuities in the relation between enrol-

ment and pupils/schools characteristics other than between enrolment and class size, which are,

respectively, “forcing” and “treatment” variables of RD design. Since this condition undermines

strongly the validity of this estimation strategy, as in case of a randomized experiment,2 the authors

suggest caution when using RD, especially in application to private schools that may have a better

control over enrolment compared to public schools. More recently, Zada et al. (2009) have found
1Hanushek (1997, 2003), after reviewing a great number of estimates, has concluded that there is no significant

evidence about the existence of a positive effect of smaller classes on pupils’ achievement. To this, Krueger (2003;
see also Hedges et al., 1994) have argued that many studies, rejecting the existence of relation between class size and
pupils performance, have been mostly based on cross-section investigations, which are known to be subject to multiple
sources of bias (on potential sources of bias see the discussion in Hoxby, 2000).

2Lee, 2008; see also Hahn et al., 2001. The presence of jumps in observed family characteristics at the discontinuity
point (i.e. these characteristics are not balanced to the left and right of the cut-off point) could suggest non-random
allocation of pupils around that point.

2



an evidence of “selection” policy in public schools in Israel as well. Precisely, they observe dis-

continuities between characteristics of pupils’ households and enrolment only in public secondary

schools.

In this paper, we estimate the class size effect in Italian public primary schools, which are now

engaged in an important reform movement.3 A limited research has been done on this issue so

far. Among the known studies, Bratti et al. (2007) identify the factors that influence education

attainment of Italian students in secondary schools (“superiori” schools) in PISA test. They use

class size as a control variable that reveals statistically not significant. However, they do not control

for the class size that 15 years old students in the first grade of superiori had during five years of

primary and three years of media school, though the educational research indicates that class size

effect may be particularly important in early schooling producing then a cumulated effect (Nye et

al., 2000). Brunello and Checchi (2005), using the data of cohorts born in Italy before 1970, find

that the lower pupil-teacher ratio calculated at regional level is positively correlated with higher

educational attainment and its effect is stronger for those individuals who were born in the regions

and cohorts with poorer family background.

Research on the class size effect in Italian primary schools has been previously hampered by

data limitations.4 To our best knowledge, there is no research on this issue using INVALSI data.

With this study, we want to fill this gap. We conduct our study using the outcomes of INVALSI

test of V grade pupils in 2008/09. Since Italian primary schools in 2008/09 were subject to the

maximum-class-size rule of 25 pupils, there exists a strong and discontinuous relation between

class size and grade enrolment. We estimate the relation between test results and class size using a

fuzzy RD model focusing on the pupils whose schools are in the small intervals around cut-off val-

ues of enrolment (multiples of 25). Though we do not find any clear evidence which would support
3The reform bill, approved in 2008, was motivated by a number of reasons. Namely Italian students did badly

in international comparisons as PISA test, PIRLS and TIMSS, though they studied for longer and in smaller classes
(see Cipollone and Sestito, 2007). Class size and pupil-teacher ratio exhibited important variations across regions (see
Bratti et al., 2007). Biagi and Fontana (2008) identify the factors that determine significant variations in class size
across Italian regions calling for rationalization of public spending.

4Only starting in 2004/05, INVALSI agency, independent body in Italy charged with conducting standard testing,
provides tests results of pupils in II and V grades in primary schools.
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class-size reduction policy, we observe class size has been largely used as a kind of compensatory

policy between Italian public primary schools.

The remainder of the paper is organized as follows. The next section describes the institutional

setting of public primary schools in Italy. It is followed by the description of data in Section 3.

Section 4 presents the RD design and reports our main results and Section 5 concludes.

2 Italian setting

Primary schools in Italy provide education to pupils from 6 to 10 years old. They are mostly

public, free of charge, and the only criteria to be used in deciding admission of a pupil is age. Par-

ents have a right of admission of their children in neighborhood public school, but they can choose

another public school unless it is oversubscribed. Alternatively, they may send their children to

private schools, which in 2008/09 accounted for about 9.8 percent of all primary schools in Italy.

Though public schools are designed and financed centrally, and the assignment of teachers to

them occurs through the central administrative mechanism based upon seniority rules, they exhibit

important variations in terms of class size.5 Table 1 (see in the Appendix) reports the regional

distribution of average class size in V grade in primary public schools in 2008/09. As we see, class

size varies noticeably across regions (from 15 to 20 pupils per class), the average class at national

level is relatively small including about 18 pupils (Column 1). Our dataset includes schools whose

average V grade class size is 19.41 (see Column 2). Figure 1 below illustrates the distribution of

schools in our dataset according to their enrolment in V grade. The majority of schools is of small

dimension: the median enrolment in V grade is around 30 pupils, whereas its mean value is around

40 pupils. More than fifty percent of schools run two classes in V grade (see Figure 2). These facts

are coherent with the national data pattern according to which primary public schools in Italy are

small and they run relatively few classes per grade.6
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Figure 1: Number of schools according to enrolment, 2008/09

3 Data

We conduct our study using information from two sources. The first is the INVALSI test results

of V grade pupils in primary schools in 2008/09. These results are available for 150,000 pupils

coming from 5,303 public and private primary schools (“circoli didattici”)7 from all Italian regions.

We restrict our analysis to the public schools whose testing procedure was assisted by INVALSI

supervisors. The second source of information is school-level administrative data from the Italian

Ministry of Education (MIUR).

Our analysis begins by matching the sample of INVALSI data with the dataset on school char-

acteristics and class size coming from MIUR. Since the Ministerial data do not contain information

about schools in regions with a special statute as “Val d’Aosta” and “Trentino Alto Adige”, we lose

data about their pupils. In addition, the linked data set decreases because of many missing data
5See Biagi and Fontana (2008).
6When we say schools, we intend school units (“plessi”).
7“Circolo didattico” is an administrative aggregation of school units (“plessi”) having the same administrative body

and situated in the same town. “Circolo didattico” may include “plessi” from more than one neighborhood little towns.
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Figure 2: Distribution of schools according to the number of classes in V grade, 2008/09

about pupils characteristics in INVALSI data. At the end, we have 25,407 pupils coming from

1,561 school units (“plessi”), which do not include combine schools, schools for adults, schools

run in hospitals and other unusual places.

In our analysis, the unit of observation is pupil. Table 2 presents descriptive statististics for the

main variables (personal information, pupils families’ characteristics, etc.) in our data. All infor-

mation used in this study pertains to the same year of the INVALSI test. Since we are concerned

with estimating class-size effect on pupils performance, our most important dependent variable is

class size. We calculate its average level in V grade at school level.8 9

8In Italian primary public schools, the number of classes organized at the moment of subscription remains almost
unchanged during all five years due to a particular mechanism through which teachers are assigned to schools. As a
result, even if the number of pupils in single classes at grade level may change due to new pupils or pupils moving
to other schools, the average grade class size does not vary noticeably. In addition, in Italian primary schools, grade
retention almost never occurs. Thus, we may conclude that most of pupils in our data have attended school for the
same period of time and have being exposed to the same average grade class size.

9In our data, full-time classes are larger than normal-time classes. Their average class sizes are, respectively, 20.33
and 19.26. This result reflects the increasing demand of families for full-time classes.
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4 Regression Discontinuity Design and Estimations

It is well known that class size is a potentially endogenous variable because it may be influenced by

decisions of schools and/or parents. To examine this prediction in our data we regress class size on

number of selected observables describing pupils, schools and towns including regional dummies.

Table 3 reports the results. As we see, such variables as pupils’ father ISEI index, non-working

mother and cohabiting status result strongly correlated with class size in the first specification in

Column (1). The statistical significance of these variables, however, decreases or disappears at all

as we add to the estimation equation town characteristics and regional dummies (see Columns 2,3).

This suggests that the selection problem related with class size may be a result of the aggregation

of schools across towns and regions, rather than of behavioral pattern of schools and/or parents.

Until 2008/09, primary schools in Italy were subject to the maximum class-size of 25 pupils,

whose application consisted in adding a class each time that grade enrolment exceeded the multi-

ples of 25 pupils.10 11 Given the application of the rule, we expect that class size is discontinuously

related with grade enrolment in our data. In order to examine it, we calculate the predicted class

size in V grade, which is the average class size that schools would have in V grade if they had ap-

plied the rule perfectly. The predicted class size is calculated by applying the formula as in Angrist

and Lavy (1999):

PCist =
Φist

int[(Φist −1)/25]+1
. (1)

In the above equation Φist is the V grade enrolment at school s in town t where the pupil i

studied in 2008/09, int(•) is the function that takes the greatest integer less than the given argument.
10Actually, the rule was applied in I grade at the moment of subscription because, as it has been already mentioned,

in Italian public primary schools the number of classes organized in I grade remains almost unchanged during all five
years of elementary school due to the particular procedure through which teachers are assigned to schools.

11Schools could deviate from the maximum-class rule in a number of cases. Namely, they could reduce the number
of pupils in classes under 25 when classes had pupil/s with special educational needs; when schools were situated
in small islands, mounting towns, towns with linguistic minorities and in zones with high rates of adolescent deviant
behavior. Finally, the Ministry of Education provided that schools might have smaller and larger than 25 pupils classes
depending on the number of tenured teachers. For more on this, see Decreto Ministeriale 24 luglio 1998, n.331. The
school reform proposed by Gelmini in 2008 elevated the maximum size of class in primary schools to 28 pupils,
starting in the schooling year 2009/2010. In 2009 the reform was approved.
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Figure 3: Average and Predicted Class Size (1), 2008/09

Figure 3 plots the relation between average class size, its predicted level PCist and enrolment

Φist at school level. Looking at the Figure 3, we observe first that the rule explains a great part of

variation in class size in our data. Second, there exists a strong and discontinuous relation between

class size and enrolment. Precisely, the average V grade class size exhibits discontinuous jumps

around cut-off values (multiples of 25) as it is predicted by the rule.

Since we know the rule explaining class organization in primary schools in 2008/09, and since

in our data class size decreases discontinuously at the cut-off values of enrolment, we may use re-

gression discontinuity design to estimate causal relation between class size and pupils performance.

Specifically, if schools and parents have imperfect control over the forcing variable (enrolment),

the “treatment” effect on pupils performance through variation in class size can be then estimated

by confronting test results of pupils in large and small classes on left and right sides of cut-offs.

Regression discontinuity design provides two estimation strategies: sharp and fuzzy. In a sharp

RD design, the treatment assignment should be a result of a deterministic function of forcing

variable. Opposed to it, fuzzy RD does not require that the probability of receiving the treatment
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Figure 4: Average and Predicted Class Size (2), 2008/09

Note: The circles scatter plots mean class size for each enrolment cell. The x plot represents the predicted class size that describes the relationship

between enrolment and class size that would exist if the maximum class-size rule were applied perfectly.

necessarily changes from 0 to 1 at the cut-off/s, i.e. a case of imperfect compliance (Trochim,

1984; Hahn et al., 2001).

Findings from Figure 4, where now circles plots mean values of average class size in each

enrolment cell, indicates that actual class size does not obey its predicted level perfectly, yet since

the probability of reducing class size contains jumps at cut-offs points, we may adopt a fuzzy RD

design. A standard model of fuzzy RD can be described as follows (van der Klaauw, 2002):

Pist = δE(CSist |Φist)+α(Φist)+ εi (2)

E(CSist |Φist) = λ1(Φist ≥ Φ̄)+β (Φist) (3)

In the above equations Pits is the test score of pupil’s i in school s in town t, CSist is average

class size in V grade at school level, Φist is the V grade enrolment at school level, Φ̄ indicates
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the cut-off values of enrolment (multiples of 25), and α(•) and β (•) are functions of enrolment

since we assume that test results may depend on enrolment other than through class size. Being

enrolment a discrete variable, class-size effect can be estimated only parametrically (Lee and Card,

2008). We decide a linear specification for α(•) and β (•) choosing the piecewise linear splines

whose kinks correspond to the values of cut-offs (Urquiola and Verhoogen, 2009, Zada et al., 2009;

see also McEwan and Urquiola, 2005).

4.1 Results (Full sample)

Since in RD design the forcing variable, Φist , should be related smoothly to pupils and schools

characteristics, we start our analysis by looking at the distribution of some selected observables

along the cut-off values of enrolment.

Table 4 reports the results of the regressions of selected pupil’s characteristics on dummies for

cut-offs (1Φ ≥ 26, 1Φ ≥ 51, 1Φ ≥ 76, 1Φ ≥ 101, 1Φ ≥ 125, 1Φ ≥ 150, 1Φ ≥ 175) and on linear

splines of enrolment. The coefficients on the dummies are the estimates of the average variations

in the values of dependent variables at those breaks. As we see, at the first cut-off (Φ ≥ 26), all

selected variables - ISEI indexes of pupils’ mothers and fathers, their mothers’ education and the

average number of pupils with special educational needs - decrease in their average values. The

average decline in ISEI index of pupils’ mother is particularly significant and equals 4.3 (the vari-

able’s range of variation is 0-68). In addition, the decline in the value of this variable is confirmed

by the negative and statistically significant coefficient on the linear spline corresponding to the first

cut-off, (Φ−25)1{Φ ≥ 26}. All selected variables in Table 4 result positively related to grade en-

rolment, which is, basically, a measure of school dimension. This result does not necessarily mean

that families with “better” educational and economic status prefer bigger schools, rather it may be

a result of geographical aggregation effect, whereas in bigger cities with bigger schools economi-

cal and educations status of people generally gets better. Surprisingly, we do not find an evidence

that the number of pupils with special educational needs increases in smaller classes though it is

explicitly provided by the Ministerial rules. The coefficient on dummies for this variable is signif-
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icant only on the cut-offs corresponding to 25 and 125 pupils, where they are uniformly negative

indicating that the number of such pupils seems to be higher in schools with larger average class

size.

Figures 5, 6 and 7 provide an additional evidence of non-smooth distribution of selected vari-

ables along enrolment cut-offs. They illustrate the results of the local regressions of ISEI indexes

of pupils’ father and mother, and of education of pupils’ mother in the following intervals: [0,25];

[25,50]; [50,75]; [75,100]; [100,125]; [125,150]; [150,175]; [175;200]. Findings confirm the uni-

form “selection” pattern along the first four enrolment cut-offs (25, 50, 75 and 100). Specifically,

ISEI index of pupils’ father and mother, and education of pupils’ mother decline at the majority

of breaks of the first four cut-off intervals, which include the large majority of observations in

our data. The remaining intervals include few schools and present extreme variation in values of

selected variables.

Figure 5: Isei index of pupil’s father along enrolment (full sample), 2008/09
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Figure 6: Isei index of pupil’s mother along enrolment (ful sample), 2008/09

Figure 7: Education of pupil’s mother along enrolment (full sample), 2008/09

In addition to the assumption of smooth distribution of pupils and schools characteristics at cut-
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Figure 8: Number of schools according to their enrolment in V grade (full sample), 2008/09

offs, regression discontinuity inference requires that the number of observations nearly to cut-off

values on left and right sides are approximately the same. In regard to it, Urquiola and Verhoogen

(2009) have constructed a theoretical model of quality differentiation and sorting, according to

which schools may stuck at enrolment cut-offs. The authors find the confirm to this prediction by

looking at the variations in the number of Chilean private schools around cut-offs of enrolment.

Figure 8 presents the distribution of schools according to their enrolment in V grade in our

dataset. Though we consider public primary schools where non-subscribing of pupils seems to be

difficult to realize, “stucking” behavior seems to be present at the first threshold. Specifically, if

we look at Figure 8, the number of schools with enrolment 25 ≤ Φ < 30, where an additional class

should be added for few pupils, declines compared to the schools with enrolment 20 ≤ Φ < 25.

Figures 9 and 10 display a graphical analysis visualizing the relationship between test scores

and enrolment. They present the results of local weighted regressions of test scores in, respectively,

math and Italian language on grade enrolment. Unexpectedly, we see that the average test scores

in both math and Italian tend to get worse in the first four intervals when enrolment exceeds its
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Figure 9: Distribution of test scores in math along enrolment (full sample), 2008/09

cut-offs values. Only at the threshold of 125 pupils, test results seem to get better on the right side

of the enrolment cut-off.

Table 6 shows the results of the regression model in (2) and (3). Column (1) reports the results

of the first-stage regression of class size on indicators for whether enrolment exceeds the cut-off

values of enrolment along with the piecewise linear splines. In this specification, standard errors

are clustered by enrolment.12 As we can see - the adjusted R-squared is about 0.66 - the rule

explains a great part of variation in class size. Its average decline equals to about 9 pupils at the

first cut-off gradually decreasing in the following ones as predicted by the rule. The declines are

statistically significant in the first four cut-offs. In Column (2) and Column (3), we present the

results of the reduced-form regressions of test outcomes in math and Italian language, which show

that test scores decline on average in all cut-offs, although the declines are statistically significant

only for Italian in 150 and 175 cut-offs. Columns (4) and (5) report IV specifications for math and
12Lee and Card (2008) suggest this procedure when the forcing variable is a discrete one.
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Figure 10: Distribution of test scores in Italian language along enrolment (full sample), 2008/09

Italian language, respectively, while in Columns (6) and (7) we include selected observables. In

both cases, the coefficients on class size are mostly positive, but always not statistically significant.

By adding some observables to IV specification as an additional control for possible selection

problem (Columns 6-7), it seems that the second stage estimation of pupils performance on class

size does not change considerably the results, which suggest that RD design may be appropriate

estimation strategy in this case.

4.2 Results (Small Intervals around cut-offs)

In this section, we focus on small intervals around enrolment cut-offs as in Van der Klaauw

(2002).13 We want to estimate class-size effect using the observations from small intervals around
13See also Hoxby (2000) and Angrist and Levy (1999, p. 540).
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the first four cut-offs (25, 50, 75 and 100).14 15Analysing the observation from intervals of 3

pupils around the first four cut-offs, we do not find empirical evidence of precise sorting pattern of

schools and pupils/families in the selected intervals. Table 7 reports the results of the reduced-form

regressions of pupils characteristics (ISEI indexes of pupils’ father and mother, pupils’ mother ed-

ucation) and of the average number of pupils with special education needs on dummies for cut-off

values, on enrolment and piecewise linear splines. As we see, ISEI index of both, pupils’ mother

and father, result significantly related to the class size drop at the second cut-off, but ISEI index of

father increases while the index of pupil’s mother decreases. Second, though ISEI index of father

increases at the second cut-off (Φ >50), it decreases in average values, being statistically signifi-

cant, if we consider all right part of the second interval Φ ∈[51, 53]. Precisely, the coefficient of

the second linear spline is significant and negative. Only in the fourth cut-off interval, all selected

observables - ISEI indexes of pupils’ father and mother, and mother’s education - decline in aver-

age in the right part of the cut-off interval Φ ∈[101, 103], yet their average variations at the break

Φ = 101 (coefficient for dummy) are uniformly statistically not significant. Analogously, average

number of pupils with special educational needs varies through intervals without following any

precise pattern.

As in the previous section, we control whether the number of schools varies noticeably between

left and right sides of cut-off intervals, which would mean that schools in some way have a control

over their enrolment by not subscribing to avoid adding classes for few additional pupils. Figure 11

presents an histogram of V grade enrolment in schools belonging to the first four cut-off intervals

of ±3 pupils. Though a precise pattern of schools’ distribution remains not clear, it seems that the

number of schools on right sides of the majority of the four cut-off intervals tends to decline.

Table 8 reports the results of first stage, reduced-form for test outcomes in math and Italian
14We chose the first four cut-offs of enrolment, because more than 90 percent of schools in our dataset have enrol-

ment in V grade Φ ≤ 100 pupils.
15In addition, at the first four cut-offs, according to the rule, declines in class size are particularly large becoming

less noticeable as enrolment grows. For example, as predicted by the rule, class size drops from 25 to 13 pupils at the
first cut-off, from 25 to 17 at the second one, from 25 to 19 at the third one, and, finally, from 25 to 20 at the fourth
one.
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Figure 11: Number of schools in enrolment intervals (25±3; 50±3, 75±3; 100±3), 2008/09

language, and IV stage for math and Italian language without and with inclusion of some observ-

ables using the observations from intervals: 25±3; 50±3; 75±3, 100±3. Suprisingly, the first

stage estimation shows that average class size, except for the 100±3 interval, in average is posi-

tively related with increases in enrolment at cut-offs (see Column (1)). These results agree with

the visual evidence: histograms of average class size show that the selected intervals include many

non-compliant schools, i.e. schools that add an additional class before the enrolment actually ex-

ceeds multiples of 25; and schools that do not add it when the rule prescribes so. The latter ones

are particularly numerous in the first interval.16 Columns (2) and (3) of Table 8 report the estimates

of reduced form of test scores in math and Italian language. We see that test performance decline

in average only at the second cut-off where average class size increases and test results in math and

Italian language decline. The evidence is different for the fourth cut-off where average class size

decreases together with test results in math and Italian language. The point estimates of IV spec-
16For space economy, we omit these Figures for intervals of 3 pupils in the text; they are available from the authors

upon request.
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ification of class size increasing upon pupils test outcomes are uniformly negative for both math

and Italian language, but not statistically significant (columns 4-5). When selected observables are

included as controls (Columns 6-7), the coefficients on class size, although they largely fall, are

still negative and not statistically significant.17

Table 9 provides the same results by enlarging the range of intervals: 25±5; 50±5; 75±5,

100±5. The first stage estimation in Column (1) shows now that only for the 100±5 interval

average class size is significantly and negatively related with increases in enrolment at cut-offs,

while for all other intervals the coefficients are always not statistically significant. Columns (2) and

(3) of Table 9 report the estimates of reduced form of test scores. We observe that test outcomes

in math and Italian language decline significantly at the second and fourth of the cut-offs. The

estimates of IV specification of the effect of class size on test scores are still negative for both math

and Italian language, although not statistically significant in both specifications (without, Columns

4-5, and with inclusion of selected observables, Columns 6-7).

The main results, obtained still focusing on the observations from small intervals around first

four cut-offs, are summarized in Table 10. Columns 1-4 report the results of IV stage separately for

intervals of ±3 and ±5 pupils using the indicator for whether schools’ grade enrolment is above

the respective cut-off as an instrument. Columns 5-6 show, respectively, the results of IV stage for

pooled cut-off estimation without and with inclusion of observables. For each interval we provide

the measure of average class size on both sides of cut-off intervals. In all estimations standard

errors are clustered by V grade enrolment. As we see class-size reduction has always a positive

and significant (**;***) effect on both test results in math and Italian language in the fourth of

cut-off intervals whereas average class-size declines from 23.876 to 21.470 in ±3 pupils interval,

and from 23.612 to 21.470 in ±5 pupils interval (Column 4). Moreover, the effect of class-size

reduction has a positive and significant (**) effect on test results in math and Italian language in

the second of cut-off intervals (Column 2; ±5 pupils). This is the only clear evidence supporting

class-size reduction policy that we find in our data. In the remaining cut-offs, most coefficients are
17Lee and Card (2008), and Urquiola and Verhoogen (2009) suggest that clustering by enrolment level lowers

significance levels.
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statistically not significant.

4.3 Class Size Policy

In this section, we focus on schools that in 2008/09 respect the maximum class-size rule perfectly.

In the previous section, looking at the observations in small intervals around enrolment cut-offs,

we have found that they include a great number of schools that deviate from the rule by adding

an additional class when enrolment is not sufficient, or non-adding it as predicted by rule. In

this section, according to our data, we want to see whether compliant schools differ from schools

that deviate from the rule in a systematic way. In our data there are 1,580 schools units, among

them 1,467 have the average class size as predicted by the rule. Clearly, the deviating schools are

concentrated in cut-off intervals (see Figure 3). Figure 12 reports the distribution of compliant

schools according to enrolment. As we can see, stucking behavior seems to be more evident in this

subsample of schools compared to the full sample in Figure 9. Specifically, the number of schools

applying the rule declines when enrolment exceeds multiples of 25 pupils of few pupils and grows

straight afterwards. The same pattern can be observed at the cut-offs of 50, 75 and 100 pupils.

Focusing on schools in ±3 pupils intervals around cut-offs, Figure13 shows that the number of

compliant schools in cut-off intervals on their left sides is systematically larger than on the right

ones (85 and 42 rispectively in the first cut-off interval; 37 and 19 in the second one; 17 and 10 in

the third one; and 11 and 3 in the fourth one).
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Figure 12: Number of Schools (sample of compliant schools), 2008/09

Figure 13: Number of Schools in 3-pupils cut-off intervals (sample of compliant schools), 2008/09

As in the previous analysis (full and±3 and 5 pupils samples), we look at the data of compliant
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schools to control for the distribution of pupils’ characteristics around cut-off values of enrolment.

Table 11 reports the results of reduced-form regression of selected pupils’ characteristics on cut-

off dummies, enrolment and piecewise linear splines. We do not provide the results of reduced-

form for average number of pupils with special needs as it results irrelevant in cut-off intervals.

As we can see, Table 11 presents a clear evidence of sorting of pupils’ characteristics around

cut-offs. Specifically, ISEI index of pupils’ father is negatively related to class size decline and

statistically significant at all cut-offs. At the first cut-off, all of the baseline covariates decrease; it is

worth noting that the average declines in ISEI indexes of pupils’ mother and father are particularly

large and equal to 10.3 and 7.8, respectively. The coefficient values for ISEI index of mother and

mother’s education are negative and significant also, respectively, at the second and the third of cut-

offs. These findings make us guess that there may exist a supplementary "rule" to the maximum

class-size rule, according to which public primary schools’ probability to get resources, mainly

teachers, in order to add a class when grade enrolment exceeds the threshold values increases

when they have pupils coming from “unfavorite” socio-economic background (e.g. less educated

mother, lower socioeconomics status of mother and/or father).18

5 Conclusions

In this paper we make an attempt to estimate the class-size effect on the pupils’ performance using

the data from Italian primary schools. We base our estimation strategy on RD design, which has

been largely used in the recent economic literature on class-size issue. The application of RD

design to estimate class-size effect is appropriate when increases in grade enrolment are linked

with jumps in class size as predicted by the threshold rule generating a discontinuous relation

between the two variables. Additionally, in order to apply RD estimation strategy, practitioners

have to test if the assumptions of RD analyses are not infringed, otherwise it would invalid to infer

a “treatment” effect of class size on pupils’ test results. The RD main assumptions are that schools
18On this see West and Woessmann (2006)
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and/or parents should not be able to exactly manipulate the forcing variable (enrolment), and there

should not be evidence of sorting of baseline covariates influent for scholastic performance on

threshold values of enrolment. It follows then that baseline covariates should be used to test the

adequacy of RD design by controling whether their distribution is continuous at cut-offs points and

whether there is not a precise sorting of schools according their enrolment there, i.e. the number

of schools with large and small classes should not vary consistently at cut-offs of enrolment.

Considering our full sample, we find some evidence of discontinuities in the distribution of

observed baseline covariates and of numbers of schools along the dimension of enrolment levels.

Differently, when focusing on small intervals (±3 and ±5 pupils) around selected enrolment cut-

offs (25, 50, 75 and 100), selection problem appears to become less evident, as, on the one hand,

we still do not observe clear stucking behavior of schools at the enrolment thresholds, and, on

the other hand, pupils’ characteristics result to be distributed smoothly in the large majority of

cut-offs for the ±3 and 5 pupils samples. Considering these samples, however, we do not find a

sufficient evidence supporting class-size reduction policy. In the 2 cut-off interval and, only for the

±5 pupils sample, the 4 cut-off interval, class-size reduction has a positive and significant effect on

test results in math and Italian language. For the rest of our analysis using these samples, class-size

is a variable mostly not statistically significant for test results.

We do not find a significant evidence which would strongly support class-size policy, yet our

results call for further research on this issue. As we observe in our data, class size is largely used

in primary public schools as a kind of compensatory policy. In fact, when we focus on schools that

in 2008/09 applied the maximum class-size rule perfectly, we find that they differ from “deviating”

from the exogenous maximum-class-size rule schools in a more systematic way. First, the stucking

behavior is more evident in the reduced sample of compliant schools. Second, in this sample there

is a clearer evidence of sorting of pupils’ characteristics around cut-offs points: right sides of

cut-off intervals include more pupils with “unfavorite” socio-economic background.19 A possible

issue of future research can be to understand whether the compensatory policy through class-size
19Lee and Lemieux note that “The observed sorting may well be evidence of economic agents responding to incen-

tives, and may help identify economical interesting phenomena.” (p. 79-80, 2009)
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reduction is efficient. The data about Italian schools state that only primary level of schooling

manages to compensate for family background of pupils, while in “media” and “superiori” schools

education gaps grow depending on students families’ background (Fondazione Giovanni Agnelli,

2011).
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Appendix

Table 1: Average class size in V grade in Italian regions, 2008/09
Average class size (1) Average class size (2)

Abruzzo 16.81 19.19
Basilicata 16.42 18.14
Calabria 14.9 18.25
Campania 17.19 19.47
Emilia Romagna 19.61 20.75
Friuli Venezia Giulia 17.34 19
Lazio 18.33 19.94
Liguria 17.77 18.95
Lombardia 18.86 20.49
Marche 18.78 20.23
Molise 14.42 18
Piemonte 17.49 19.27
Puglia 19.48 20.64
Sardegna 16.55 17.86
Sicilia 17.77 20.70
Toscana 18.79 19.61
Umbria 17.08 18.76
Veneto 18.12 18.46
Total 17.94 19.41
Note: In Column 1, regional average class sizes are calculated using the data from all public primary
schools in 2008/2009. In Column 2, regional average class size are calculated using the data of schools in
our dataset.
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Table 2: Summary Statistics, 2008/09
Mean SD Min Max

Girls 0.49 (0.49) 0 1
Foreign citizenship 0.053 (0.23) 0 1
Foreign country of birth
of at least one parent

0.059 (0.23) 0 1

ISEI index father 41.43 (14) 0 68
ISEI index mother 26.25 (23.58) 0 68
Homemaker mother 0.38 (0.49) 0 1
Mother’s education
(1,2,3,4,5,6)

3.29 (1.36) 1 6

Intact family status
(1,2,3,4)

1.17 (0.54) 1 4

Internet at home 0.75 (0.43) 0 1
Family language (1,2,3) 1.22 (0.53) 1 3
Homework assistance at
home

0.97 (0.36) 0 1

Schooling time 32.82 (4.25) 27 40
Average V grade class
size

19.45 (3.99) 2 29

Average number of
pupils with special
needs in V grade classes

0.56 (0.60) 0 4

V grade enrolment 44.41 29.45 5 274
School enrolment 217.3 (142.77) 6 1,407
Town population 105,552.07 (313,209.6) 500 2,547000
Mountain municipality
(0,1,2)

0.48 (0.76) 0 2

N pupils 25,407
N schools 1,561

28



Table 3: Average class size in V grade on selected observables, 2008/09
(1) (2) (3)

Girls -0.049454[-1.0670] -0.026707[-0.8384] -0.028921[-0.9016]

Foreign Citizenship 0.042926[0.2879] 0.099019[1.0498] -0.053408[-0.5684]

ISEI Index Father 0.014723***[5.1135] 0.006290***[3.2304] 0.004784**[2.5164]

ISEI Index Mother 0.002900[1.2261] 0.000033[0.0170] 0.000497[0.2649]

Homemaker Mother -0.198376*[-1.7966] -0.32523***[-3.8367] -0.11337[-1.3982]

Mother’s Education 0.135299***[4.0131] 0.036768*[1.6843] 0.038560*[1.7244]

Cohabiting Status 0.158667***[2.6345] 0.078944[1.5177] 0.049892[0.9903]

Siblings -0.065774[-0.4811] 0.192834*[1.8138] 0.138759[1.3675]

Average Number of Pupils
with Special Needs

0.029189[0.2080] 0.000567[0.0040]

Dummy Full-time Classes 0.559463***[2.7734] 0.463471**[2.2681]

Dummy Mounting Status -0.278924*[-1.9397]

Regional Dummies NO NO YES

V grade enrolment 0.269967***[6.1097] 0.260420***[6.1461]

V grade enrolment2 -0.00218***[-4.9499] -0.00208***[-4.9408]

V grade enrolment3 0.000005***[4.2476] 0.000005***[4.2760]

Constant 18.28058***[37.732] 11.52080***[9.4558] 11.62878***[8.9224]

N pupils 25,407 25,407 25,407
N schools 1,580 1,580 1,580

Adjusted R-squared 0.0111 0.3601 0.3888
Note: Robust standard errors in parentheses are clustered for V enrolment. *** p<0.01, ** p<0.05,

* p<0.1. The regression in column (3) include regional dummies.
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Table 11: Reduced-Form Estimates of Selected Observables (sample of compliant schools),
2008/09

ISEI index father (1) ISEI index mother (2) Mothers’ education (3)

1{Φ ≥ 26} -7.773760*** (2.3482) -10.318900***(0.9757) -0.763182***(0.1729)

1{Φ ≥ 51} 1.930775* (1.0391) -4.608166***(0.9732) 0.021752(0.2848)

1{Φ ≥ 76} -11.345361***(0.7926) -6.244773(3.8475) -0.186474*(0.1080)

1{Φ ≥ 101} -3.084358**(1.1662) -0.302702(1.9496) 0.072928(0.0884)

Φ 0.021136(0.0186) -0.028598(0.0290) 0.000868(0.0014)

(Φ−25)1{Φ ≥ 26} 3.097997***(0.9371) 1.748179***(0.2892) 0.255036***(0.0683)

(Φ−50)1{Φ ≥ 51} -0.677889*(0.3413) 0.654220**(0.2343) -0.047910(0.1005)

(Φ−75)1{Φ ≥ 76} 3.965961***(0.1036) 0.570533(1.2766) 0.095906***(0.0324)

(Φ−100)1{Φ ≥ 101} -0.052756***(0.0186) -2.039584***(0.0290) -0.235058***(0.0014)

Constant 40.956966***(0.8348) 29.367030***(1.1970) 3.347153***(0.0697)

Observations 4,111 4,111 4,111

Adjusted R-squared 0.0102 0.0140 0.0093

Note: In all regressions, standard errors are clustered by enrolment, see Lee and Card (2008). *** p<0.01, ** p<0.05, * p<0.1.
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