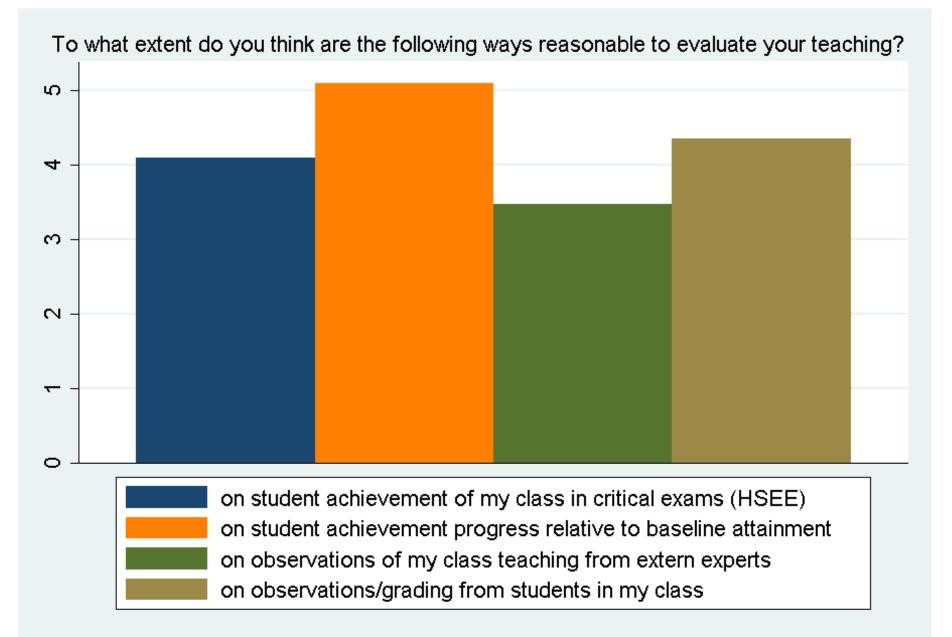


Annual Value-added School Effects from Various Models and their Inter-temporal Variability: Evidence from China

Pai Peng, Eckhard Klieme

German Institute for International Educational Research (DIPF)

Rome, 04.10.2012



Background

- Growing interest in using value-added around the world (Braun, 2005; OECD, 2008; Thomas, 2010)
- In China: Student raw score in HSEE is the dominant school evaluation criterion.
- Adverse effect of raw score measure:
 - Widespread school choice behavior
 - Mathew Effect of schools
 - Good/bad practice in teaching not being identified
 - Lack of morale in schools with low-achieving intake

HSEE: High School Entrance Examination

Teachers' views of evaluating methods

Research Questions

- What are the conceptual differences of some commonly used value-added models and their specifications?
- In Chinese contexts, are estimated annual value-added school effects consistent across models?
- To what extent are estimated annual valueadded school effects stable from grade to grade (year to year)?

Various editions of value-added

Linear regression value-added models

$$\mathbf{Y}_{ij2} = a_0 + \alpha_1 \mathbf{Y}_{ij1} + \sum_n \beta_{pij} \mathbf{X}_{pij} + \boldsymbol{\varepsilon}_{ij} \quad \boldsymbol{\varepsilon}_{ij} \sim N(0, \sigma^2)$$

Fixed-effects value-added models

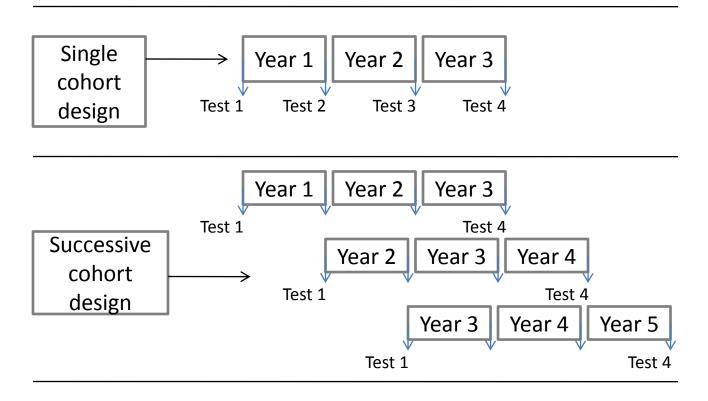
$$\mathbf{Y}_{ij2} = a_0 + \alpha_1 \mathbf{Y}_{ij1} + \sum_p \beta_{pij} \mathbf{X}_{pij} + \theta_j + \varepsilon_{ij} \qquad \varepsilon_{ij} \sim N(0, \sigma^2)$$

Random-effects or multi-level value-added models

$$Y_{ij2} = a_0 + \alpha_1 Y_{ij1} + \sum_p \beta_{pij} X_{pij} + \zeta_j + \varepsilon_{ij}$$
$$\zeta_j \sim N(0, \tau^2) \quad \varepsilon_{ij} \sim N(0, \sigma^2)$$

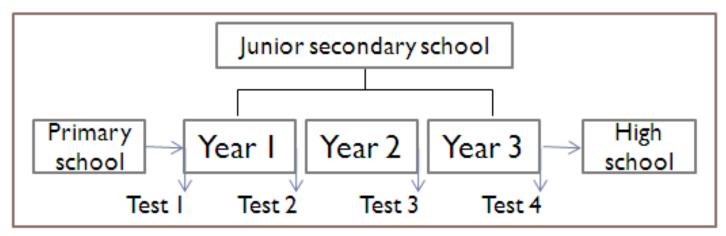
<u>* all models are based on single-cohort data</u>
 <u>* not gain score</u>

Different model specifications


 Control for what in the model? (school cannot control)

- <u>Prior attainment</u> only
- Prior attainment and <u>student SES (Type A)</u>
- Prior attainment, student SES and <u>school</u> <u>aggregated variable</u> (e.g. school mean prior attainment, school mean SES) (Type B)

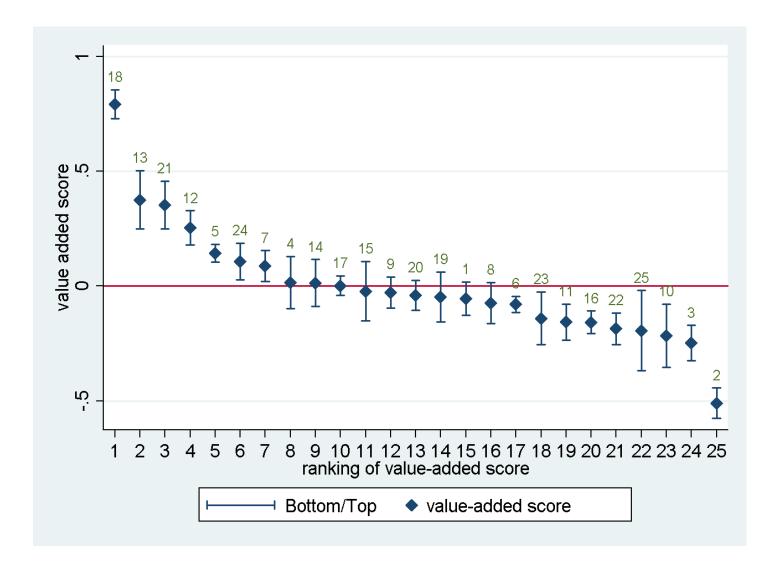
Two types of stability of school effects


- One of the most important issues in school effectiveness research (Scheerens & Bosker, 1997)
- Year-to-year & Cohort-to-cohort

Methodology

• Single-cohort longitudinal design

- Tests:
 - curriculum-based (Chinese, Maths, English)
 - Achievement: total score, standardized
 - Reliability (Cronbach's alpha=0.72-0.92)
 - Externally designed and graded
- All 2012 cohort of students in all 25 junior secondary schools in one LEA
 LEA: Local Education Authority



Methods

• Matrix of models

		Prior attainment Only	Type-A	Type-B
Linear Regression Model	(1)	1PO	1A	
Fixed-effect Model	(2)	2PO	2A	
Random-effect Model	(3)	3PO	3A	3B

Results

1

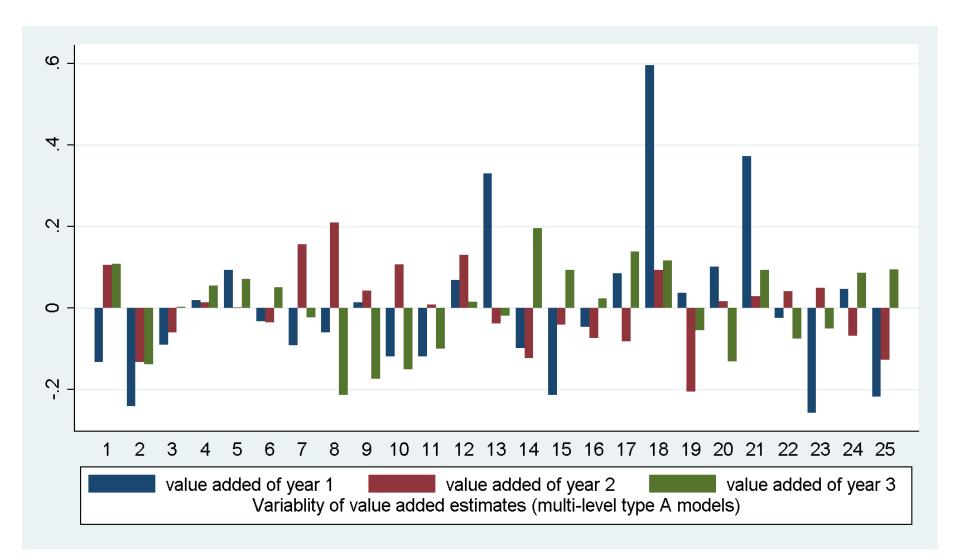
L

Table 4: Parameter Estimates of Seven Value-added Models for Each Year

		Prior score	Boy	Age in month	SES	Mean prior score	Mean SES
	year 1	0.93(0.01)***					
1PO	year 2	0.93(0.01)***					
	year 3	0.93(0.01)***					
	year 1	0.96(0.01)***					
2PO	year 2	0.92(0.01)***					
	year 3	0.90(0.01)***					
	year 1	0.96(0.01)***					
3PO	year 2	0.92(0.01)***					
	year 3	0.90(0.01)***					
	year 1	0.91(0.01)***	-0.02(0.01)	-0.00(0.00)*	0.03(0.01)***		
1A	year 2	0.91(0.01)***	-0.07(0.01)***	-0.00(0.00)	0.01(0.01)		
	year 3	0.90(0.01)***	-0.01(0.01)	-0.00(0.00)***	0.03(0.01)***		
	year 1	0.94(0.01)***	-0.01(0.01)	-0.00(0.00)*	0.01(0.01)		
2A	year 2	0.92(0.01)***	-0.07(0.01)***	-0.00(0.00)	0.02(0.01)*		
	year 3	0.90(0.01)***	-0.01(0.01)	-0.00(0.00)***	0.01(0.01)		
	year 1	0.94(0.01)***	-0.01(0.01)	-0.00(0.00)*	0.01(0.01)		
3A	year 2	0.92(0.01)***	-0.07(0.01)***	-0.00(0.00)	0.02(0.01)		
	year 3	0.90(0.01)***	-0.01(0.01)	-0.00(0.00)***	0.01(0.01)		
	year 1	0.94(0.01)***	-0.01(0.01)	-0.00(0.00)*	0.01(0.01)	-0.37(0.12)***	0.28(0.10)**
3B	year 2	0.92(0.01)***	-0.07(0.01)***	-0.00(0.00)	0.02(0.01)*	0.07(0.10)	-0.06(0.07)
	year3	0.90(0.01)***	-0.01(0.01)	-0.00(0.00)***	0.01(0.01)	-0.04(0.09)	0.06(0.07)

Consistency of value-added across models

14	ne 5. et	orrelation 1PO	2PO	3PO	1A	2A	3A	, 3B
	1PO		210	210		211	211	
	2PO	1.00						
	3PO	1.00	1.00					
Year 1	1A	0.99	0.99	0.99				
	2A	1.00	1.00	1.00	1.00			
	3A	1.00	1.00	1.00	1.00	1.00		
	3B	0.85	0.84	0.83	0.88	0.86	0.85	
	1PO							
	2PO	1.00						
	3PO	0.99	0.99					
Year 2	1A	0.99	0.99	0.99				
	2A	0.99	0.99	0.98	1.00			
	3A	0.98	0.98	0.99	0.99	0.99		
	3B	0.97	0.97	0.98	0.98	0.98	0.99	
	1PO							
	2 PO	1.00						
	3PO	0.99	0.99					
Year 3	1A	0.98	0.98	0.98				
	2 A	0.99	0.99	0.98	0.99			
	3A	0.98	0.98	0.99	0.99	1.00		
	3B	0.95	0.95	0.96	0.99	0.98	0.98	



Stability across years

Table 6: Correlations of Value-added Score Across 3 year

	year1-year2	year2-year3	year1-year3
1PO	0.18	-0.35	0.15
2PO	0.18	-0.33	0.15
3PO	0.18	-0.27	0.19
1A	0.13	-0.39	0.20
2A	0.13	-0.39	0.20
3A	0.13	-0.35	0.23
3B	0.12	-0.38	0.19

Conclusions and discussions

- Schools' value-added is highly consistent across different models.
 - The simpler, the better?
 - Transparency (Confidence interval; super population)
 - Local affair/no national assessment
 - Time-consuming to collect student background information
- Annual value-added of schools is not stable across years.
 - not proper for high-stake accountability
 - useful for school self-evaluation/improvement
 - Dilemma (timely feedback VS. accurate estimate)

Thank you very much! Vielen Dank! 谢谢!

Presenter: Pai Peng German Institute for International Educational Research peng@dipf.de